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Abstract: - Recent research results in compressive sensing have shown that sparse signals can be recovered 
from a small number of random measurements. Whether quantized compressive measurements can provide an 
efficient representation of sparse signals in information-theoretic needs discuss. In this paper, the distortion rate 
functions are used as a tool to research the quantizing compressive sensing measurements bring about average 
distortion rate. Both uniform quantization and non-uniform quantization were considered, for quantized 
measurements, the improved subspace pursuit was adapted to accommodate quantization error based on the 
concept of consistency, and experimental results show that the improved algorithm significantly reduces the 
reconstruction distortion when compared to standard compressive sensing techniques. 
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1 Introduction 
Compressive sensing [1-2] is a linear sampling 
method that converts the unknown input signal in 
high-dimensional space into a small enough signal. 
In general, with the measured value of the 
dimension reduction, it is hard to just recover an 
unknown signal. However, when the input signal is 
sparse enough, accurate recovery is possible. This 
paper assumes that the unknown signal is K-sparse, 
namely, there is at most K non-zero value. A direct 
method is to search all possible signals, and then 
find the one which is the most consistent with linear 
measurement and the sparsest. This method only 
needs M-2K random measured values, but finding 
the sparsest signal representation is a NP-difficult 
issue. On the other hand, Donoho and Candes have 
proved that in the case of more measurement, sparse 
signal reconstruction is a NP-difficult polynomial 
time problem, which shall be solved through 
converting the reconstruction problem into a linear 
programming problem with tracking and other 
methods. 

In most practical applications, it is necessary to 
use quantifying mechanisms for compress sensing 
information, but quantifying will result in distortion 
of the data obtained. Therefore, in the case of 
quantization error, using distortion theory to analyze 
compressed sensing performance is useful. When 
the quantization error is bounded and known in 
advance, Reference [3] gives the upper bound of the 
subspace tracking distortion (SP) reconstruction. In 

terms of the magnitude of the transform coefficients 
decay exponentially bounded compressible, 
Reference [4] gives an upper bound of 
reconstruction distortion caused by uniform 
quantization. The same quantization is applied 
strictly in Reference [5] in K-Item sparse signal and 
indicates a large part of unused quantized field. The 
methods described above focus on the worst case, or 
a simple 1 - bit quantization. 

In contrast with the worst case, this dissertation 
studies the average degree of distortion of 
quantifying the measured value. Firstly, when the 
measurement matrix and sparse signals both follow 
a specific probability model, it can be inferred the 
exact rate-distortion function [6-9] for scalar 
quantization, including uniform quantization and 
non-uniform quantization. The rate-distortion 
function based on the measured value further 
describes the distortion of the signal reconstruction 
in restructuring algorithm. Secondly, this 
dissertation improved two standard compressed 
sensing reconstruction algorithms to adapt to the 
quantization error. Simulation results show that 
compared with the classic compressed sensing 
reconstruction mechanism which does not count 
quantization error, the improved algorithm has 
better performance. Improved reconstruction 
algorithm is mainly based on a reconstruction 
ideology. 

The section 2 describes compressive sensing of 
quantitative rate-distortion analysis; section 3 is 
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improved SP reconstruction algorithm being used to 
quantify compressive sensing, simulation 
experiment as section 4 shown. 
 
2 Compressive sensing of quantitative 
rate-distortion analysis 
 
Here we regard signal measurement as a lossy 
compression process, which is a question of whether 
random measurement value can show the sparse 
signal effectively or not. 
2.1 Compressive Sensing (CS) 

Compressed sensing is accomplished by linear 
projection to encode an N dimension signal X as 
dimension measurement vector. Namely it is: 

  (1) 

Among them, is measurement matrix. Assuming x is 
strict k-sparse, the reconstitution should be 
described as using given Y and  to recover x. 

Base tracking method transfers the question of 

reconstitution to the question of minimum 1  
norm. 

      s.t.        (2) 

Which,
∑
=

=
N

i

iXX
1

1

 describes the norm 1   of 
vector X. This is a Convex Optimization Problem 
that could be solved by linear programming. The 
sufficient condition for the algorithm can accurately 
reconstruct the signal is based on restricted 
isometric property (RIP). The definition shows 
below: 

Definition 1 (Limit isometric property) for any 

K=1, 2… the isometric constant Kδ  of matrix 
NM×∈Φ R  meets function below: 

( ) ( )






 +≤Φ≤−=

2
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2
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    (3) 

X is any K-sparse vector. Once the isometric 
constant parameter meet the condition

( )1,0,, 0101 ∈∈≤ + cRccKcδ , it can be defined that matrix 
Φ  meets RIP. That is to say, the reconstruction 
algorithm can accurately recover K-sparse signal. 

Compressive sensing [10-12] contains the 
measurement and reconstruction of the original 
signal. Then, the compressed measurements will be 
quantified and the original signal will be also 
reconstructed through the quantitative 
measurements. At the same time, the quantization 
distortion of measured value in the process and the 
resulting reconstruction distortion will be analyzed. 
 
2.2 The scalar quantization of measured 
values  

Assuming R⊂C  is a finite discrete set, it can be 
called codebook. Quantizer is the mapping from R 
to codebook C, it satisfies the condition that while

ωRY ∈ , CY ∈=ωˆ
. ω is quantization level and ωQ is 

related quantized interval. Performance of quantizer 
can be described with rate-distortion function. Let 
distortion measure be square error distortion 
(minimum mean squared error, MSE). As for a 
random signal source R∈Y , the degree of distortion 

of quantizer is 




 −=
2

2
ŶYEDq

. As for a given codebook 
C, the best quantization function to make distortion 
measure minimum is below: 
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Therefore, relevant quantized interval should be: 
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Distortion factor of codebook can be: 

 ( ) 




 −=
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C
m

R 2log1:=
is the code rate of codebook C. Rate-

distortion function of given code rate R can be: 

 ( ) ( )CDRD
RC

m
C ≤

=
2log1:

* inf  (7) 

Quantization of the measurement value could 
be assumed that using same quantizer to 
respectively quantify each coordinate of Y. relevant 
rate-distortion function shows below: 

 ( )
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Assuming that quantization level is 
R

i iC 2,2,1, =∈ω , relevant quantized interval is 
],[ 1 ii ttQ −=ω , the best scalar quantization meet 

conditions below: 

If the best quantizer has quantization level 1−iω  
and iω , quantized interval threshold value that 
minimized distortion is: 

 
)(

2
1

1−+= iiit ωω
 (9) 

If section threshold value of best quantizer are
1−it  and it , quantization level that make distortion 

minimum is: 

 [ ] ],[, 1 iii ttYYE −∈=ω  (10) 

Lloyd algorithm that design quantizer 
codebook is based on two requirements above. 
Lloyd algorithm starts from an initial codebook and 
calculate threshold value in iteration using function 
(13). Then update codebook by using function (14). 
Although Lloyds algorithm might not found the 
global optimum quantized interval, it gives local 
optimum codebook. 

Assuming quantificat codebook C has been 
generated and be fixed while it was measured. 
Progressive performance of rate-distortion of 
quantized measurement value will be analyzed. 
Assuming NX R∈ is strict K-sparse signal, its non-
zero term follow independent identically distributed 

Gaussian random variable. Let 
NMA

M
×∈=Φ R1

, each 
term of A is Gaussian random matrix with 
independent identically distributed mean value 0 
and variance 1. 
 
2.3 Quantization distortion analysis of 
measurement values 

Let { }0:1 ≠≤≤= iXNiT  be support set of x, that is to 
say,  when Ti∈ , 0≠iX  and when Ti∉ , 0=iX . As for 
all Mi ≤≤1  and { }NT ,,1⊂  meets KT = , it is easy to 
find that average and variance are respectively 0 and 
K. According to central-limit theorem, when 
( ) ∞→NMK ,, , convergence in distribution of 

∑
∈Tj

jji XA
K

,
1

 will converged to Gaussian distribution. 

Therefore, convergence in distribution of iY
K
M

 is 
also on Gaussian distribution. 

Using a scalar quantizer with R2 electrical level 
to quantize random variable, it can be observed: 
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The last function is distortion factor of quantized

iY
K
M

. Inhomogeneous scalar quantizing distortion 
function of Gaussian random variable is: 

  
( ) 2*2

2
32lim δπ

=
∞→

RDg
R

R  (12) 

2δ   is variance of Gaussian signal source. So 
advance gradually rate-distortion limiting 
performance of well-distributed quantized observed 
value is: 

( )
( ) ( )

2
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Let scalar quantizer with codebook Cu,
R

uC 2=
, qua

ntize random variable iY
K
M

. Rate-distortion function
 in uniform scalar quantizer of Gaussian random var
iable is: 

 
( ) 2ln

3
42lim 2*

,

2
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R
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So advance gradually rate-distortion limiting 
performance of well-distributed quantized observed 
value is: 

 ( )
( ) ( ) 2ln

3
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,
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Unit of quantized code rate is bit/ Number of 
measurement. 

It can be seen that when quantized code rate is 
big enough, distortion factor of optimum non-
uniform quantizing is just 1/R of optimum uniform 
quantizing. 
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2.4 Reconstitution signal distortion analysis 
of quantization measurement values 

Reconstruction distortion is primarily due to the 
distortion measure. Based on the conclusion of 
compressed sensing measurements quantization 
distortion previously, the reconstitution caused by 
the quantization error of the distortion led further 
qualitative analysis to investigate two specific 
reconstruction algorithms: base tracking algorithm 
(BP) and subspace tracking algorithm (SP). 
Consider the following equation to quantify the 
measured values are given as the following: 

 ( ) EXYqY +Φ==ˆ  (16) 

ME R∈  is quantization error. Let X̂ be the signal that 
reconstruct from quantized observed value Ŷ . So 
upper bound of reconstruction distortion shows 
below: 

 
2
2

22

2
ˆ EcXX ≤−

 (17) 

Constant c displays different value for different 
reconstruction algorithm. Bound constant of BP 
algorithm is: 
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bpc
44 1)1(3

4
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Bound constant of SP algorithm is: 

 ( )KK
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spc
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2
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1
1

δδ
δδ

−
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=  (19) 

So upper bound of reconstruction distortion 
derivation shows below. Assuming support set T  of 
sparse signal X̂ can be accurately reconstructed, 

reconstruction signal X̂  would be: 

 ( ) YX TTT
ˆˆ *1* ΦΦΦ=

−  (20) 

The singular value of matrix ( ) *1*
TTT ΦΦΦ

−

 is
)1(1 KK δδ +− . So lower bound of reconstruction 

distortion shows below: 
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To make the expression more concise, 
)1(1 KKlbc δδ +−=

. 

Combined conclusion (17), (19), (22) with 
(26), Gradual boundaries of reconstruction 
distortion can be found. When signal is strict sparse 
and measurement matrix is Gaussian random 
matrix, bound of scalar quantized reconstruction 
distortion is: 

( )
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It is noteworthy that the distortion of the 
reconstructed boundary (27) given, in some cases, is 
not critical. Experiments show that the upper bound 
of the reconstruction distortion often given in 
excessive. 
 
 
3 Improved SP reconstruction 
algorithm being used to quantify 
compressive sensing 
 
Most reconstruction algorithm of compressive 
sensing can be directly used in the quantization, and 
regard the quantization error as noise. But in this 
case, the quantizer information cannot be used. The 
key to improve the standard reconstruction 
algorithm here is to make full use of the structure of 
quantizer, and to reconstruct consistent single. 

Consistency: suppose YXf →: ， Xx∈ and )(xfy = . 

If yxf =)ˆ( ， then Xx∈ˆ is called the consistent 
estimation of x coming from y . The algorithm 
consistent estimation is called Consistent 
Restructuring Algorithm. 

Ŷ is quantized measurement vector, so relevant 
quantized interval can be ensured easily. Let ikiY Q∈ˆ

, 

among them, iŶ is the ith element of Ŷ , ikQ is relevant 
quantized interval. Q is Descartes direct product set 
of ikQ

, vector Q∈Y if and only if MY R∈ and 
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MiY iki ,,2,1, =∈Q
. As for uniform quantizing, 

2/ˆ ∆≤−YY
. So it can be described as: 
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The equation is consisting of elements, so it can be 
written as: 
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As for non-uniform quantizing, Q∈ΦX̂ . So standard 
BP algorithm transfers to: 

 
Q∈ΦXtsx ..min

1  (25) 

In order to improve SP algorithm to satisfy 
quantized compressed sensing, at first, geometric 
interpretation of projection operation in SP 
algorithm should be given. Assuming index set

{ }NT ,,1⊂  , and KT = .  TΦ  is the matrix which 
consist by column vector of Φ  of index T , assuming 
row TΦ  is nonsingular, that is column linear 
independent. ( )Tspan Φ  is sub-space generated by 

row TΦ . If TTΦΦ*
 is reversible, for random given 

MY R∈ˆ , the definition of projection from Ŷ  to 
( )Tspan Φ  is: 

 
( ) YYprojY TTTTTp

ˆ)(,ˆ *1* ΦΦΦΦ=Φ= −

 (26) 

*
TΦ  is conjugate transposition of TΦ . Relevant 

projection residual vector Y and projection 

coefficient vector pX
 are defined as: 

 ( ) pTr YYYresidY −=Φ= ˆ,ˆ
 (27) 

and 

 ( ) YYpcoeffX TTTTp
ˆ)(,ˆ *1* ΦΦΦ=Φ= −

 (28) 

Given projection operation in improved SP 
algorithm is equivalent to solve optimization 
problem. 

  

2

2
ˆmin XY TTX

Φ−
∈R  (29) 

Algorithm process shows below: 

Input: K ， Φ ， Ŷ  

Initialization: 







 Φ= Y*in figures largest K the of Indexes0T  

and 
( )0

0 ,ˆ
Tr YresidY Φ=

 

Iteration: procedure of l th Iteration shows 
below: 

1）

{ }

1l

rY
*1ll in figures largest K the of IndexesTT~ −Φ−=

； 

2）

plTTRpX
p XYX ~minarg Φ−=

∈
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3）

{ }pXin figures largest K the of Indexes1T = ; 

4）
2
2

min TT
l

r XYY Φ−=
； 

5 ） If 2

1

2

−> l
r

l
r yy

， then 1−= ll TT  and exit the 
iteration。 

Output: vector X̂  meets { } 0ˆ
,,1

=
− lTN

X
  and 

( )lTlT
YpcoeffX Φ== ,ˆ

 

Step 2 and Step 4 reconstruction algorithm uses 
a consistent ideology, inequality using elements is a 
quadratic programming in process of reconstruction, 
quadratic programming that is consistent with 
estimates of the feasible set of collections. 

The computational complexity of the improved 
SP algorithm is given below. Projection operation in 
the improved algorithm calculates the projection 
coefficients with quadratic programming. Quadratic 
programming can be solved in different ways, for 
example, the ellipsoid method and interior point 
method. The both methods calculate the 
computational complexity of polynomial, but the 
interior point method is faster in computing speed in 
practical operation than ellipsoid method. When 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Liu Tao

E-ISSN: 2224-3488 55 Volume 12, 2016



considering the scalar quantity mechanism, 
computational complexity of the quadratic 
optimization problem is ( )2/32MKΟ . Therefore, the 
computational complexity of improved projection 
operation is polynomial time. The upper limit for 
the number of iterations is ( )KlogΟ , and the upper 
limit for total computational complexity of the 
improved algorithm is ( )( )2/12log MKNKM +Ο . Since the 
projection step is performed twice in iteration, and 
the reconstruction distortion increases exponentially 
with the decrease in the number of iterations, the 
improved SP algorithm can calculate effectively. 
 
4 Simulation Experiment 
 

In this dissertation, a large number of simulation 
experiments have been made about reconstruction 
algorithms and different types of quantizer and are 
composed. For the given parameters N and K , 
measurement matrix Φ is generated by an 
independent and identically distributed Gaussian 
random population. Signal with potential K  in 
support set T is uniformly and randomly selected 
from { }N,,1 , the corresponding support set are 
generated by the standards of independent and 
identically distributed Gaussian distribution 
population, the rest are set to 0. 

In order to test different quantization and 
reconstruction algorithm, X and Φ  were randomly 
generated a thousand times. Each time, we calculate 
the measured value Y and its quantized value Ŷ  and 
the corresponding reconstructed signal X̂ . In the 
simulation, we test a set of parameters: N =256, K

=6， M =64, quantization code rate changing from 2 
bits to 6 bits. 

In figure 1, it is compared that the degree of 
distortion in measurements of the uniform quantizer 
and non-uniform quantizer. When quantization code 
rate increases, the gap between uniform and non-
uniform quantization distortion increases this is 
consistent with the results given in the formula. In 
figure 2, it is compared that the reconstruction 
distortion degree of SP and BP algorithms. When 
the given quantization code rate increases, the 
reconstruction distortion gap between BP and SP 
has increased. In figure 3, it is compared that the 
uniform quantization and non-uniform quantization 
in both cases with improved BP and SP 
reconstruction distortion algorithm, the non-uniform 
quantization is also superior to the uniform 

quantization, and the improved SP algorithm has 
better performance than BP algorithm. In figure 4, it 
is compared that the uniform quantization distortion 
of the two improved reconstruction algorithm with 
their original algorithm, the decrease of distortion 
increases as the rate increase. Since SP algorithm is 
far less complicated than BP algorithm, the 
improved SP algorithm has obvious advantages in 
signal reconstruction after quantizing the 
compressed measurements. 
 

 
Figure 1   quantization error of measurement value 

 

 
Figure 2   algorithm reconstruction error 

 

 
Figure 3  Improved algorithm reconstruction error 
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Figure 4 Comparison of uniform quantized improved algorithm 
reconstruction error 
 
 
5 Conclusion 
 
This dissertation gives a theoretical limit of 
compressed sensing to quantify the rate-distortion 
performance, and proves that quantifying the 
compression measured value will cause a lot of 
distortion. With the information of quantizer and the 
ideas of consistent improvement, we re-modeled 
two typical compressed sensing reconstruction 
algorithms. Simulation results show that, compared 
with the classic error of not considering the 
quantization compressed sensing reconstruction 
mechanisms, improving the algorithm has better 
performance, the improvement of subspace tracking 
algorithm has a low calculation. 
   In the future, we will research how to decrease 
computational complexity of the improved SP 
algorithm. 
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